EEG-based neonatal seizure detection with Support Vector Machines

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG-based neonatal seizure detection with Support Vector Machines

OBJECTIVE The study presents a multi-channel patient-independent neonatal seizure detection system based on the Support Vector Machine (SVM) classifier. METHODS A machine learning algorithm (SVM) is used as a classifier to discriminate between seizure and non-seizure EEG epochs. Two post-processing steps are proposed to increase both the temporal precision and the robustness of the system. Th...

متن کامل

Feature preprocessing improves Support Vector Machine accuracy for seizure detection in neonatal EEG

On Neonatal Intensive Care Units (NICU) many vital parameters are recorded but monitoring of brain function by Electroencephalography (EEG) is rare, mainly because signal interpretation requires expert visual inspection. In 1-6 % of newborns on the NICU (sub clinical) seizures occur and even more frequent in prematures and lowbirth weight children [1]. Failure of detection and subsequent lack o...

متن کامل

Eeg-based Drowsiness Detection Using Support Vector

......................................................................................................................ii DEDICATION ................................................................................................................... v ACKNOWLEDGEMENTS .............................................................................................. vi TABLE OF CONTENTS .................

متن کامل

Tornado Detection with Support Vector Machines

The National Weather Service (NWS) Mesocyclone Detection Algorithms (MDA) use empirical rules to process velocity data from the Weather Surveillance Radar 1988 Doppler (WSR-88D). In this study Support Vector Machines (SVM) are applied to mesocyclone detection. Comparison with other classification methods like neural networks and radial basis function networks show that SVM are more effective in...

متن کامل

Content-Based Image Orientation Detection with Support Vector Machines

Accurate and automatic image orientation detection is of great importance in image libraries. In this paper, we present automatic image orientation detection algorithms by adopting both the illuminance (structural) and chrominance (color) low-level content features. The statistical learning Support Vector Machines (SVMs) are used in our approach as the classifiers. The different sources of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Clinical Neurophysiology

سال: 2011

ISSN: 1388-2457

DOI: 10.1016/j.clinph.2010.06.034